Barrier Bucket Studies in the Fermilab Recycler Ring

Chandra Bhat

MI/RR and Instrumentation Groups,

Beams Division, Fermilab

20th ICFA Advanced Beam Dynamics Workshop
High Intensity High Brightness Hadron Beams
Fermilab
April 8 - 12, 2002

Outline

- Fermilab Recycler Ring (a pbar storage Ring) and its role in Collider Run II
- Barrier Buckets in RR
 - Selection of Wave forms for RR barrier buckets
 - Beam dynamics simulations and RF manipulations in RR
- Beam stacking and unstacking using barrier buckets in RR
- Conclusions and plans

Fermilab Site

Recycler Ring in MI Tunnel

RR Machine Parameters

Table 1.1: Recycler ring parameter list.

Circumference	3319.400	ш	
Momentum	8.889	GeV/c	
Number of Antiprotons	2.5×10^{12}		
Maximum Beta Function	55	m	
Maximum Dispersion Function	2.0	ш	
Horizontal Phase Advance per Cell	86.8	degrees	
Vertical Phase Advance per Cell	79.3	degrees	
Nominal Horizontal Tune	25,425		
Nominal Vertical Tune	24.415		
Nominal Horizontal Chromaticity	-2		
Nominal Vertical Chromaticity	-2		
Transition Gamma	20.7		
Transverse Admittance	40	π mmm	
Fractional Momentum Aperture	1%		
Superperiodicity	2		
Number of Straight Sections	8		
Number of Standard Cells in Straight Sections	18		
Number of Standard Cells in Accs	54		
Number of Dispersion Suppression Cells	32		
Length of Standard Cells	34.576	m	
Length of Dispersion Suppression Cells	25.933	m	
Number of Gradient Magnets	108/108/128		
Magnetic Length of Gradient Magnets	4.267/4.267/2.845	ш	
Bend Field of Gradient Magnets	1.45/1.45/1.45	kG	
Quadrupole Field of Gradient Magnets	3.6/-3.6/7.1	k G /m	
Sextupole Field of Gradient Magnets	3.3/-5.9/0 kG/m		
Number of Lattice Quadrupoles	72		
Magnetic Length of Quadrupoles	0.5	m	
Strength of Quadrupoles	30	kG/m	

Run II parameters with RR

			With RR		
RUN	Ib(1993-95) (6x6)	Run IIa (36x36)	Run IIa (140x105)	Run IIb (140x105)	
Protons/bunch Antiprotons/bunch*	2.3x10 ¹¹ 5.5x10 ¹⁰	2.7x10 ¹¹ 3.0x10 ¹⁰	2.7x10 ¹¹ 4.0x10 ¹⁰	2.7x10 ¹¹ 1.0x10 ¹¹	
Total Antiprotons	$3.3x10^{11}$	1.1×10^{12}	4.2x10 ¹² 0.48	E13 1.1×10^{13}	1.25E13
Poar Production Rate	6.0×10^{10}	$1.0x10^{11}$	$2.1 \text{x} 10^{11}$	$5.2x10^{11}$	hr -1
Proton emittance	23π	20π	20π	20π	mmmrad
Antiproton emittance	13π	15π	15π	15π	mmmrad
β*	35	35	35	35	cm
Energy	900	1000	1000	1000	GeV
Antiproton Bunches	6	36	103	103	
Bunch length (mms)	0.60	0.37	0.37	0.37	m
Crossing Angle	0	0	136	136	μrad
Typical Luminosity	$0.16 \text{x} 10^{31}$	$0.86 \text{x} 10^{32}$	$2.1 \text{x} 10^{22}$	5.2×10^{32}	cm ⁻² sec ⁻¹
Integrated Luminosity	3.2	17.3	42	105	pb ⁻¹ /week
Bundh Spacing	~3500	3%	132	132	nsec
Interactions/crossing	2.5	2.3	1.9	4.8	

Why do we have to use barrier buckets in RR?

• RR is an 8 GeV pbar storage ring. At any given time, the RR requires to have up to three different regions

- Cooled beam ~54 eVs,
- Hot beam ~108 eVs
- Transferred beam ~10 –16 eVs
- Each one of them serve specific functions. These specifications demand use of barrier buckets.

Choice of RR Barrier Buckets

The RR runs below transition energy. Therefore the wave shapes have to flip.

Properties of Barrier Bucket

Bucket area:

$$\mathcal{A}=2T_2\hat{\Delta E}+rac{8\pi|\eta|}{3\omega_0eta^2E_0eV_0}(\hat{\Delta E})^3.$$

Bucket half height:

$$\Delta E_{\rm b} = \left(\frac{eV_0T_1}{T_0}\frac{2\beta^2 E_0}{|\eta|}\right)^{1/2}$$

- η is phase slip factor,
- E_o is synchronous energy,
- ω_{o} =2 π f_{rev} with f_{rev}= beam circulation frequency.

Barrier Bucket

RF Manipulations in RR using Barrier Buckets for Stacking

Computer Simulation of Beam Stacking in RR

eliminating 2.5 MHz slowly

With Jim Maclachlan)

TURN 69016 1.000E+00 are

squeeze barrier elowly

PF VOLTAGE (PANE)

